count, sum, avg by range in log(n) time

考虑一下这样一个查询:

select count(*), sum(tax), avg(weight)

  from pepole

where id >= ${minid} && id < ${maxid};

 

怎样才能实现更小的时间复杂度?

 

一般情况下,最简单的方法就是遍历这个区间。但是这需要O(logn +m)的时间复杂度,其中m是区间长度,n是总记录数。

 

实际上,可以略增一点存储代价,对该查询实现O(logn)的时间复杂度。我以前写过一篇文章
,可以对count(*)实现logn复杂度:

  count(*, minid, maxid) = rank(maxid) – rank(minid)

其中,rank(id) 表示该记录在整个表中的序号(排序名词)。这很容易理解。

 

如果要计算sum(x)或avg(x),需要扩张一下,在每个结点中存储一个隐藏值,用来表示该以结点为根的子树的sum(x)值,那么,插入/删除/修改的代价也是O(logn),计算sum(x),avg(x)的代价也是O(logn)。

 

 sum(x, minid, maxid) = node(maxid).hidesumx – node(minid).hidesumx

 avg(x, minid, maxid) = sum(x)/count(*, minid, maxid)

 

BekeleyDB中,可以实现 count(*) 的log(n)时间复杂度,因为它提供了类似rank()函数的功能,使用btree表,建表时提供DB_RECNUM标志。查询时,使用DBC::get,用DB_GET_RECNO flag:

 

作者:
该日志由 rockeet 于2010年02月05日发表在算法分类下, 你可以发表评论,并在保留原文地址及作者的情况下引用到你的网站或博客。
转载请注明: count, sum, avg by range in log(n) time
标签:
【上一篇】
【下一篇】

您可能感兴趣的文章:

发表评论

您必须 登录 后才能发表评论。